Algebra 2H

\qquad

Sections 8.1 and 8.2 Homework Day 1

Marge accepted a job where she will make $\$ 35,000$. Each year, she will get a 4% pay increase. Complete the chart below to determine how much she will earn after tyears.

\# years, \mathbf{t}	4% increase	New Salary
0	-	30,000
1		
2		
3		
4		
5		

Exponential Growth and Exponential Decay Models

When a quantity increases by a fixed percent each time period, it can be modeled by an exponential growth function:

$$
y=a(1+r)^{t}
$$

When a quantity decreases by a fixed percent each time period, it can be modeled by an exponential decay function:

$$
y=a(1-r)^{t}
$$

y is the amount after t time periods, a is the initial amount and r is the percent growth/decay expressed as a decimal.
$(1+r)$ is the growth factor
$(1-r)$ is the decay factor

Problems:

1. For the problem above (Marge), determine whether the situation represents exponential growth or exponential decay.
a) Write an equation to model the situation:
b) How much will she earn after 10 years? \qquad
c) How many years would it take until she earns more than $\$ 80,000$ years annually? \qquad
2. A car depreciates at a rate of 21% a year. The car originally costs $\$ 26,000$.

Does this represent exponential growth or decay? \qquad
a) Write an equation to model the situation:
b) How much will the car be worth after 8 years? \qquad
c) When will the car be worth less than half of its original value?
3. The amount (in milligrams) of a drug in the body t hours after taking a pill is given by : $A(t)=200(0.75)^{t}$
a) What is the initial dosage given? \qquad
b) What percent of the drug leaves the body each hour? \qquad
c) How many milligrams of the drug will be left in the body after 8 hours? \qquad
d) How many hours will it take until there are less than 5 mg of the drug in the body? \qquad
4. A rapidly decaying radioactive material's half-life is every 9 hours. The material originally has 500 mg of radioactive material.
a) Write a model to represent this situation (what time period does t represent?)
b) How much radioactive material will be left after 45 hours? \qquad
c) How much radioactive material will be left after 8 days?

Compound Interest - is interest paid on an initial investment, called the principal, and on previously earned interest.

If an initial investment, P, is in an account that pays an annual rate, r (as a decimal), compounded n times per year, then the amount, A, in the account after t years is:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Examples:

1. You deposit $\$ 100,000$ in an account that earns 2.5% annual interest. Find the balance after three years if the interest is compounded:
a) annually
b) quarterly
c) monthly
d) daily
2. You want to have $\$ 10,000$ in your account after 5 years. Find the amount your initial deposit should be for each situation:
a) The account pays 3.5% annual interest compounded monthly.
b) The account pays 4.25% annual interest compounded yearly.
